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With advances in next-generation sequencing technology, non-invasive

prenatal testing (NIPT) has been widely implemented to detect fetal

aneuploidies, including trisomy 21, 18, and 13 (T21, T18, and T13). Most NIPT

methods use cell-free DNA (cfDNA) fragment count (FC) in maternal blood. In

this study, we developed a novel NIPT method using cfDNA fragment distance

(FD) and convolutional neural network-based artificial intelligence algorithm

(aiD-NIPT). Four types of aiD-NIPT algorithm (mean, median, interquartile

range, and its ensemble) were developed using 2,215 samples. In an analysis

of 17,678 clinical samples, all algorithms showed >99.40% accuracy for T21/

T18/T13, and the ensemble algorithm showed the best performance (sensitivity:

99.07%, positive predictive value (PPV): 88.43%); the FC-based conventional

Z-score and normalized chromosomal value showed 98.15% sensitivity, with

40.77% and 36.81% PPV, respectively. In conclusion, FD-based aiD-NIPT was

successfully developed, and it showed better performance than FC-based NIPT

methods.
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Introduction

Since the discovery of cell-free fetal nucleic acids in maternal blood (Lo et al., 1997),

non-invasive prenatal testing (NIPT) has been widely used to detect fetal chromosomal

aneuploidy (Chiu et al., 2008; Chiu et al., 2010). Furthermore, with the advancement of

next-generation sequencing (NGS) technology, new methods for the large-scale analysis

of sequencing data have been developed.
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Two sequencing strategies are commonly applied in NGS-

based NIPT—namely, massive parallel sequencing (MPS) (Chiu

et al., 2008), in which the entire chromosome is sequenced in low

depth, and targeted sequencing (TS), in which only the target

region of the chromosome is sequenced (Zimmermann et al.,

2012; Pergament et al., 2014). In MPS, as the entire chromosome

is sequenced, aneuploidy can be analyzed not only for

chromosomes 21, 18, and 13 and for the sex chromosomes

but also for other chromosomes (Pertile et al., 2017). In

addition, maternal cancer can be screened via the analysis of

the whole set of chromosomes (Bianchi et al., 2015). In TS, only a

certain selected target region of the chromosome is amplified and

sequenced; as the sequencing is selective, the cost is

approximately 10-fold lower than that of the conventional

MPS method (Sparks et al., 2012). Thus, TS can be used as a

small bench-top sequencer; however, its application is limited as

aneuploidy can be analyzed only for the target regions.

MPS is the main strategy applied in NGS-based NIPT, and

various algorithms have been developed for bioinformatics

analysis. Initially, the Z-score method was proposed (Chiu

et al., 2008), followed by other methods, such as the

normalized chromosomal value (NCV) wherein an optimized

normalizing chromosome set is used on each target chromosome

(Sehnert et al., 2011), an algorithm utilizing only the k-mer of the

reads (NIPTmer) (Sauk et al., 2018), an algorithm that uses the

cell-free DNA fragment length [COFFEE (Sun et al., 2017) and

WisecondorFF (Mokveld et al., 2021)], a Bayesian statistics

algorithm (Xu et al., 2018), and a graphic-aided algorithm

(gNIPT) (Zhu et al., 2020). These algorithms analyze the

count of the DNA fragment in a chromosomal region. As a

count-based analysis, NIPT shows a sensitivity of 86.23%–

99.02% and a positive predictive value (PPV) of 68.00%–

85.27%, indicating a high level of technological performance;

nonetheless, these results include the possibility of false positives

and false negatives (Zhang et al., 2015; Zhu et al., 2020; Schmidt

and Hildebrandt, 2021; Dar et al., 2022).

With the advancement of artificial intelligence (AI)

algorithms, they have begun to be applied in genomic data

analysis; e.g., the convolutional neural network (CNN)

algorithm used to detect mutations (Poplin et al., 2018;

Sahraeian et al., 2019). Other areas of application include gene

prediction in the field of metagenomics (Al-Ajlan and El Allali,

2019) and motif finding in the field of epigenomics (Lanchantin

et al., 2017), with ongoing developments of AI-based methods for

various analytic purposes. For NIPT, the following algorithms

were released: support vector machine, a machine learning

algorithm to screen chromosomal aneuploidy (Yang et al.,

2018), and a deep learning algorithm to estimate the fetal

DNA fraction (Raman et al., 2019). Nevertheless, to our

knowledge, no study thus far has reported on the use of deep

learning in the screening of fetal chromosomal aneuploidy.

In this study, the concept of DNA fragment distance (FD)

was applied for the first time, instead of the fragment count

(FC)-based method for the analysis of fetal chromosomal

aneuploidy. By using deep learning, four types of aiD-NIPT

(AI using fragment distance-NIPT) algorithms were developed.

Typically, in DNA FC-based analysis, only a single count value is

used. In contrast, in analyses applying the concept of DNA FD,

various representative values of the distribution, as well as an

ensemble technique that combines such diverse values, can be

used. The use of distance data with diverse values allows for a

more accurate analysis than that when using a single value. In this

study, using a deep learning algorithm, target repeat stacking

(TRS) image generation was employed to train overall

chromosomal patterns. This is what distinguishes our method

from the conventional Z-test analysis, which cannot reflect the

overall pattern of the chromosomes (Z-score and NCV score).

The new method also includes the characteristic of learning and

analyzing various features by the algorithms themselves. The

performance of the newly developed algorithms was evaluated

using a large-scale NIPT dataset against that of conventional

Z-score and NCV-score analyses.

Results

aiD-NIPT model training result

In the development dataset, the accuracy of the test dataset

was ≥99% across all models. The accuracy of each aiD-NIPT

algorithm for trisomy 21, trisomy 18, and trisomy 13 was as

follows: aiD_Ensemble, 99.92%; aiD_Interquartile range (IQR),

99.51%; aiD_Mean, 99.84%; and aiD_Median, 99.75%

(Supplementary Table S2 and Supplementary Figure S1). The

overall sensitivity was ≥95%, with the aiD_Ensemble and

aiD_IQR showing the highest and lowest sensitivity,

respectively. The aiD_IQR algorithm for trisomy 13 had a

sensitivity of 80.00% (Supplementary Table S3).

The results of the trained model were verified through the

SHapley Additive exPlanations (SHAP) value of the TRS image. A

high value of feature importance could be seen on the ridge of the

target chromosome at the 2nd, 4th, and 6th positions. This result

suggests that the model using the TRS image learned the overall

pattern of the target chromosome for the analysis (Figure 1).

Comparison of the performance of each
aiD-NIPT algorithm for the clinical dataset

The 17,678 clinical sampleswere obtained frompregnantwomen

with a mean age of 35.58 years. The 25% and 75% percentiles of

maternal age were 34 and 38 years, respectively. The percentage of

those aged ≥35 years in the high-risk group was 67.38%. The mean

gestational age was 14 weeks, and the percentage of the 12-week

sample was the highest at 36.5%. The 11–13-week and 16–17-week

samples accounted for 82.8% of all samples.
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Algorithms using aiD_Ensemble and aiD_Mean showed the

highest sensitivity (99.07%) for the clinical samples followed by

aiD_IQR (98.15%) and aiD_Median (97.22%). Across the aiD-

NIPT algorithms, except aiD_Median, trisomy 18 had one false-

negative result. For the aiD_Median algorithm, trisomy 18 had

two false-negative results. In the aiD_IQR and aiD_Median

algorithms, trisomy 21 had one false-negative result. The

aiD_Ensemble showed the highest PPV at 88.43%, followed by

aiD_Mean at 87.70%, aiD_IQR at 80.92%, and aiD_Median at

67.74%. Comparison of the aiD_Ensemble and aiD_Mean

algorithms showed that the aiD_Mean algorithm had one

additional false-positive result.

Considering the sensitivity and PPV simultaneously, the

aiD_Ensemble algorithm, utilizing all three FD representative

values, showed the highest performance (Table 1). The

aiD_Ensemble algorithm had a sensitivity of 100% and PPV

of 96.59%, which was the highest for trisomy 21. The aiD_Mean

algorithm had a PPV of 81.82%, which was the highest for

trisomy 18, whereas all four algorithms showed the same

sensitivity. The aiD_Ensemble and aiD_IQR algorithms had a

sensitivity of 100% and PPV of 66.67%, which were the highest

for trisomy 13 (Supplementary Table S4).

Comparison of the performance of aiD-
NIPT and conventional algorithms for the
clinical dataset

The performance of aiD-NIPT, a novel model developed in

this study, was compared with that of the most well-known

conventional NIPT algorithms (i.e., Z-score and NCV-score

algorithms). Compared to the conventional NIPT algorithms

that apply the mean and standard deviation (SD) of a reference

set, the AI-based aiD-NIPT showed superior performance in

terms of both sensitivity and PPV. Amarked improvement in the

PPV was observed for aiD_Ensemble, aiD_IQR, and aiD_Mean

(>80%), as compared with those of the Z-score (40.77%) and

NCV-score algorithms (36.81%) (Table 1).

The sensitivity for trisomy 21 was 98.82% using the Z-score

and NCV-score algorithms; 100% using aiD_Ensemble and

aiD_Mean; and 98.82% using aiD_Mean and aiD_Median.

Among 85 samples confirmed for trisomy 21 by amniocentesis,

one sample presented false-negative results in algorithms using

Z-score and NCV, with a Z-score of 2.57 and NCV score of 2.46.

However, the aiD_Ensemble, aiD_Mean, and aiD_Median

algorithms showed a positive result with aiD_Ensemble at 0.87,

aiD_Mean at 0.68, aiD_Median at 0.81, and aiD_IQR at 0.90.

Discussion

In this study, a novel AI algorithm (aiD-NIPT) employing a

distance-based concept for the detection of fetal chromosomal

aneuploidy was developed and applied to an AI algorithm, the

CNN. The diagnostic performance of aiD-NIPT was evaluated,

and it was found to be superior to conventional NIPT algorithms.

The most important property of FD is that it can utilize

distribution information. The several distance representative

values calculated from the distribution can be used in various

combinations (Figure 2A). The mean, median, and IQR were the

FD representative values used in this study. With the exclusion of

repeat regions, such as centromeres and telomeres, and following

the non-overlapping binning at 1 Mb, the FC and FD (mean,

median, and IQR) values were compared for each bin. As the FC

FIGURE 1
Distribution of feature importance for the aiD-NIPT algorithm for trisomy 21. The results of the aiD_IQR (A), aiD_Mean (B), and aiD_Median (C)
analyses of the positive samples of trisomy 21, and the results of the aiD_IQR (D), aiD_Mean (E), and aiD_Median (F) analyses of the normal samples.
The red SHapley Additive exPlanations (SHAP) value indicates positive, and the blue SHAP value indicates negative feature importance for the
corresponding region. The feature importance on the edge of the TC at the 2nd, 4th, and 6th positions on the target repeat stacking image is
shown to be high, suggesting that themodel has learned to identify positive and negative samples by analyzing the overall pattern of TC. aiD: artificial
intelligence of fragment distance; IQR: interquartile range; NIPT: non-invasive prenatal testing; TC: target chromosome.
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increased, a decrease in the FD was observed. However, the

number of regions exhibiting the same FD, but a different FC

value was significant. A characteristic feature of unclear inference

of the FD from FCwas observed across all FD representative values

(i.e., mean, median, and IQR) (Figures 2B–D).

The algorithms using mean, median, and IQR and the

ensemble algorithm combining all three representative values

were compared. The ensemble algorithm showed the best

performance. The highest overall model sensitivity (99.07%) was

observed for aiD_Ensemble and aiD_Mean; aiD_Ensemble showed

the highest PPV at 88.43%. The most important performance value

for the NIPT analysis was sensitivity. The aiD_Ensemble algorithm

had the highest sensitivity (99.07%), while also having the highest

PPV (88.43%). This indicates the advantages of FD, which allows

the use of various representative values.

The performance of the distance-based AI analysis was better

than that of the count-based statistical Z-test algorithm. Across a

total of 85 samples confirmed on trisomy 21, one sample showed a

false-negative result below the cutoff, with a Z-score of 2.57 and

NCV score of 2.46; in contrast, this sample showed a positive result

with aiD_Ensemble at 0.87, aiD_Mean at 0.68, aiD_Median at 0.81,

and aiD_IQR at 0.90. The comparison of the cutoff and calculated

values for this sample revealed that the value obtained through the

statistical Z-test algorithm (Z-score and NCV score) was close to the

cutoff set at three, indicating the possibility of ambiguity between

false-positive and false-negative results depending on the slight

adjustment of the cutoff. In contrast, the values obtained through

aiD-NIPT were ≥0.8, except for aiD_Mean. Compared with the

cutoff set at 0.5, the possibility of false-positive and false-negative

results was lower, suggesting higher robustness in positive detection.

This result is associated with the characteristics of AI analyses.

In the process of TRS image generation, the impact of maternal

copy number variation (CNV) could be minimized while using the

overall pattern of a chromosome rather than a single chromosomal

value for analysis during model training. For instance, a sample

from a 40-year-old pregnant woman was classified as positive in

the Z-test analysis (Z-score of 8.77 and NCV score of 8.76), but

then confirmed as negative. The aiD-NIPT result for this sample

was negative across all models. The CNV analysis of this sample

detected a large CNV of approximately 5 Mb from 68,000,000 to

73,600,000 on chromosome 18. The feature importance through

the SHAP value showed that the CNV did not influence the aiD-

NIPT analysis (Figure 3). In the presence of both copy number loss

and gain on a single chromosome, the conventional method

displayed the possibility of false-positive and false-negative

results due to the influence of the size of the loss and gain

regions and the maternal-fetal concordance. However, as the

aiD-NIPT analysis uses the overall pattern of a chromosome in

training, a more accurate analysis is possible.

In the learning of patterns and their analyses, it is not easy to

select suitable features across a large and complex dataset. Selecting

a feature with inadequate explanatory power can lead to the learning

of noise and inaccurate results, whereas the underfit may prevent

learning. The CNN used in this study is characterized by its ability

to autonomously and simultaneously perform feature selection and

classification for the given data. The autonomous process of feature

selection allows a suitable feature to be selected for the data

characteristics (Suriya et al., 2019). An algorithm with such an

ability could be realized in NIPT, which showed superior

performance compared with conventional methods.

One false-negative case was identified as trisomy 18, which was

a low-risk result by all algorithms. This sample was from a 38-year-

old pregnant woman at 12 + 4 weeks of gestational age. The

calculated fetal fraction was 6.0 with a Z-score of −0.40 and an

NCV score of 0.17; all aiD_Ensemble, aiD_IQR, aiD_Mean, and

aiD_Median algorithms had a value of 0.00 (Supplementary Figure

S2). The impact of maternal CNV seemed negligible, and the

genotype of the placenta sample could not be evaluated. The

sample was speculated to be a case of true fetal mosaicism for

fetal chromosomal aneuploidy with normal placenta (Grati, 2016).

The PPV of the aiD_Ensemble algorithm on 17,678 samples

was 96.59% for trisomy 21 and 66.67% for trisomy 18 and trisomy

TABLE 1 Overall performance of each algorithm on the clinical dataset.

Overall
model

True
positive (n)

False
negative (n)

False
positive (n)

True
negative (n)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV (95%CI) NPV (95%CI)

Z-score 106 2 154 17,416 98.15
(95.61–100)

99.12
(98.99–99.26)

40.77 (34.8–46.74) 99.99 (99.97–100)

NCV score 106 2 182 17,388 98.15
(95.61–100)

98.96
(98.81–99.11)

36.81
(31.24–42.38)

99.99 (99.97–100)

aiD_Ensemble 107 1 14 17,556 99.07
(97.27–100)

99.92
(99.88–99.96)

88.43
(82.73–94.13)

99.99 (99.98–100)

aiD_IQR 106 2 25 17,545 98.15
(95.61–100)

99.86
(99.8–99.91)

80.92
(74.19–87.65)

99.99 (99.97–100)

aiD_Mean 107 1 15 17,555 99.07
(97.27–100)

99.91
(99.87–99.96)

87.7 (81.88–93.53) 99.99 (99.98–100)

aiD_Median 105 3 50 17,520 97.22
(94.12–100)

99.72
(99.64–99.79)

67.74 (60.38–75.1) 99.98 (99.96–100)

CI: confidence interval; PPV: positive predictive value; NCV: normalized chromosomal value; aiD: artificial intelligence of fragment distance; IQR: interquartile range.
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13. The PPV was relatively lower for trisomy 18 and trisomy

13 owing to the small sample size of confirmed trisomy 18 (n = 19)

and trisomy 13 (n = 4). The calculated PPV values, however, fell

within the range reported in other studies. According to previous

studies, the PPV is 68%–98% for trisomy 21, 47%–89% for trisomy

18, and 14%–83% for trisomy 13 (14–16), (Meck et al., 2015;

Petersen et al., 2017; Yamada et al., 2018; Chen et al., 2019; Hu

et al., 2019; Wan et al., 2021).

This study had some limitations. Although the model

performance was compared on a large scale using

17,678 samples, the positive sample was small for trisomy 18 and

trisomy 13 for accurate evaluation of performance. In addition, the

algorithm validation on rare autosomal trisomy (RAT) and twin

pregnancies were not possible due to the lack of positive samples. As

studies have reported that analysis of RATs and multiple fetuses is

possible using Z-score and NCV-score (Grömminger et al., 2014;

Scott et al., 2018), the method used in this study can be applied if

there are sufficient positive samples. Furthermore, the performance

could not be evaluated for sex chromosomes and the associationwith

the fetal fraction could not be verified despite the significant known

impact on the NIPT results.

This study used the concept of FD for the first time and

validated representative values (i.e., mean, median, and IQR) and

an ensemble algorithm. As distribution information is available

from the FD, various representative values other than those used in

this study can also be utilized. The CNN algorithm for the AI-

FIGURE 2
Concept and characteristics of fragment distance (FD) (A) and its relationship with fragment count (FC) (B–D). After positional shifting in the
direction of aligned reads, the distance between the closest positions is calculated. While the count is obtained as a single value based on a specific
region, the FD allows the use of various representative values (mean, median, and IQR) through the distribution data. With respect to the relationship
between the FC and FD representative values [mean (B), median (C), and IQR (D)], the FD is shown to decrease as the FC increases. This trend,
however, is not observed across all regions. cfDNA: cell-free DNA; IQR: interquartile range.
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based analysis requires a considerably large number of learning

parameters in order for the analysis to be conducted in a place

equipped with adequate computational power. The identification

of the optimal combination of key parameters, such as image size,

number of convolutional layers, and patch size, is important.

Although temporal and spatial factors are excluded from the

features owing to the limitations of the CNN algorithm, a more

promisingmodel is possible through fusion with a recurrent neural

network algorithm that overcomes such limitations.

A novel algorithm for detecting fetal chromosomal aneuploidy

was developed based on the concept of DNA FD and an AI

algorithm, and the algorithm performance was evaluated. The

performance of this novel algorithm was better than that of

conventional Z-score-based algorithms utilizing the mean and SD

of a reference set. Recently, numerous studies have reported the use

of low-coverage whole-genome sequencing data in early cancer

diagnosis and minimal residual cancer detection. AI algorithms that

apply the FD and TRS image generation similar to that in this study

are expected to be useful in the future for applications in other fields.

Methods

Sample collection

Blood samples were collected from 20 to 45-year-old women

with singleton pregnancy, and a total of 19,893 NIPT cases were

used. The samples were divided into two groups: the

development dataset (n = 2,215) for machine learning training

and the clinical dataset (n = 17,678) for algorithm validation

(Table 2). The clinical dataset consisted of the samples with

invasive confirmation test (amniocentesis) results and samples

with the results confirmed over the phone. This study was

approved by the Institutional Review Board of Green Cross

Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea (IRB

approval no: GCL-2021-1048-01).

Library preparation and sequencing

Approximately 10 ml of maternal blood in a Streck Cell-Free

DNA BCT® tube was centrifuged at 1,600 × g for 10 min and then

for another 10 min at 3,000 × g to isolate the plasma. Cell-free

DNA was extracted from 1 ml of the isolated plasma using the

Tiangen micro DNA kit (Tiangen Biotech Co., Ltd., Beijing,

China), and the library was constructed using the TruSeq nano

DNA kit (Illumina, San Diego, CA, United States). The NextSeq

500 device (Illumina) was used for sequencing at the 75-bp

single-end mode, and approximately 12 million reads were

generated per sample.

NGS data preprocessing

The generated reads were aligned with the reference

human genome (hg19) using the default parameter of the

FIGURE 3
aiD-NIPT analysis; aiD_IQR (A), aiD_Mean (B), and aiD_Median (C) of the samplewith trisomy 18 false-positive result in the conventional count-
based analysis, and the result of the bin analysis (D). The feature importance of the TC at the 2nd, 4th, and 6th positions on the target repeat stacking
image displays a negative value on the distribution. Through the WIthin-SamplE COpy Number aberration DetectOR (WISECONDOR) analysis, the
subchromosomal copy number variant on chromosome 18 was found. Such regions were removed in the aiD-NIPT training process. aiD:
artificial intelligence of fragment distance; IQR: interquartile range; NIPT: non-invasive prenatal testing; SHAP: Shapley additive explanations; TC:
target chromosome.
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BWA-MEM algorithm (v.0.7.5) (Li, 2013). The polymerase

chain reaction duplicate reads were removed using Picard

(v1.96; https://broadinstitute.github.io/picard/, accessed on

23 August 2014), and those showing a mapping quality

below 60 were excluded from the analysis using Samtools

(v1.2) (Li et al., 2009). In order to adjust the GC content

and mappability, the default options of the readDepth package

(v.0.9.8.4) for R were applied (Miller et al., 2011). For estimating

the fetal fraction, the default options of the SeqFF algorithm were

applied (Kim et al., 2015).

Z-score, NCV-score, and CNV analyses

After adjusting the GC content andmappability, the resultant

values were used to calculate the Z-score. The total sum of

samples was used in the normalization of each chromosome

to be analyzed. From the low-risk groups in the development set,

994 samples were randomly selected as the normal reference

cohort to calculate the mean and SD for the normalized values of

chromosomes 21, 18, and 13 in order to obtain the Z-score (Chiu

et al., 2008), with the cutoff set at 3. In the NCV analysis,

normalization was performed using the normalizing

denominator suitable for each target chromosome:

chromosome 9 for chromosome 21 as the target, chromosome

8 for chromosome 18 as the target, and the sum of

2–6 chromosomes for chromosome 13 as the target (Sehnert

et al., 2011). Using the same reference cohort applied to the

Z-score calculation, the mean and SD were calculated for the

normalized values of chromosomes 21, 18, and 13, with the cutoff

set at 3. The WISECONDOR (WIthin-SamplE COpy Number

aberration DetectOR) method was used for the CNV analysis

(Straver et al., 2014).

Calculation of FD and TRS image
generation

FD is defined as the difference in the aligned positions

between two adjacent fragments. The data used in this study

were single-end reads, and shifting was performed to accurately

define the positional values of fragments. For forward reads,

FIGURE 4
aiD-NIPT training and ensemble process. Through target repeat stacking (TRS) image generation using the fragment distance (FD)
representative values (mean, median, and IQR), the respective convolutional neural network algorithms were produced. Convolutional Neural
Network (CNN) consists of the convolution process and a neural network. In the convolution process, the convolution (Conv) andmax pooling (Pool)
processes are repeated. Thereafter, a fully connected layer (FC) is created and neural network analysis is performed. The median of the
probability values was used for the ensemble. aiD: artificial intelligence of fragment distance; BAM: the binary version of a SAM file; Conv:
convolution; FC: Fully Connected; ICC: internal control chromosome; NIPT: non-invasive prenatal testing; IQR: interquartile range; TC: target
chromosome.
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80 bp was added to the minimum value of the aligned positions.

For reversely aligned reads, 80 bp was subtracted from the

maximum positional value (Figure 2A). TRS images were

generated as the input data for the AI analysis. For TRS, the

target chromosome was repeatedly stacked across the internal

control chromosome (ICC) (Figure 4). For the ICC, three

chromosomes with the highest similarity of the reciprocal of

median chromosomal FD to the target chromosome were

selected. The data of 994 normal reference samples in the

development set were used to perform linear regression

between the target chromosome and each autosome using

the reciprocal of the median FD. Subsequently, the mean

squared error (MSE) was calculated, and three chromosomes

with the highest −log10 (MSE) were selected (Supplementary

Table S1).

For the TRS image generation, data analysis was performed

in the following steps:

Step 1. Non-overlapping binning at 1 Mbp

Step 2. Removal of problematic regions, such as centromeres

and telomeres

Step 3. Removal of bins with mappability ≤80

Step 4. Removal of bins with GC content ≤30 or >50

Step 5. Calculation of FD representative values (i.e., Mean,

Median and IQR) for each bin

Step 6. Definition of FD median values of each bin calculated in

Step 5 as global_median

Step 7. Calculation of FD representative values in Step 5

normalized with global_median as defined in Step 6 (median

normalization)

Step 8. Removal of lower 10% and upper 10% bins of the

normalized FD representative values in Step 7 from the ICC and

target chromosome

Step 9. Sequential line plotting of the values obtained in Step 8

for the ICC and target chromosome

The image size was set to 400 px width and 200 px length

with 200 ppi resolution.

TABLE 2 Composition of the development and clinical datasets.

Development dataset Clinical dataset

No. of samples Percentage (%) No. of samples Percentage (%)

Gestational age

1st trimester 833 37.61 9,296 52.59

2nd trimester 1,367 61.72 8,047 45.52

3rd trimester 4 0.18 23 0.13

Unknown 11 0.50 312 1.76

Maternal age (years)

20–24 18 0.81 157 0.89

25–29 132 5.96 1,118 6.32

30–34 549 24.79 4,492 25.41

35–39 1174 53.00 9,637 54.51

40–45 342 15.44 2274 12.86

Sample type

Low-risk 1,981 89.44 17,570 99.39

Trisomy 21 162 7.31 85 0.48

Trisomy 18 56 2.53 19 0.11

Trisomy 13 16 0.72 4 0.02

Fetal Fraction (%)

0–10 611 27.58 5237 29.62

10–20 1546 69.80 12,147 68.71

20–30 58 2.62 287 1.62

>30 0 0.00 7 0.04
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aiD-NIPT model generation

To train the aiD-NIPT model, the development dataset was

used. The composition was as follows: low-risk (n = 987), trisomy

21 (n = 162), trisomy 18 (n = 56), and trisomy 13 (n = 16). The

data were divided into the training, validation, and test datasets

in an approximately 5:3:2 ratio. To validate the performance of

the model, five-fold cross-validation was used.

The machine learning analysis was performed using

TensorFlow (v2.2.0; Google LLC) (Abadi et al., 2016). A CNN

model was developed independently. TRS images used in the

model training were converted to grayscale (400 × 200 × 1). The

list of learning hyperparameters was as follows: learning rate,

number of convolutional layers, kernel size, number of

convolutional patches, number of dense layers, activation

function, and dropout rate. In hyperparameter tuning for

model optimization, the Bayesian optimizer was used (Snoek

et al., 2012). In order to identify the model with the best

hyperparameters, 200 models were constructed, and the final

model was selected based on the loss value of the validation

dataset. For the detection of trisomy 21, trisomy 18, and trisomy

13, each respective binary model was produced, with the positive

detection cutoff set at 0.5. For the ensemble of the FD model, the

median of three probability values was used. The mean of values

obtained from the five-fold cross-validation was used as the final

probability value. To verify the feature importance of the model,

the SHAP v0.40.0 algorithm was employed (Lundberg et al.,

2018), and visualization was performed by overlapping the

weight value of the first layer of the model and the input image.

Statistical analysis

Statistical analysis was performed using R (v.4.0.5). The

sensitivity, specificity, PPV, and NPV of trisomy 21, trisomy

18, and trisomy 13 were calculated using the “caret” package

(v.6.0-88). The 95% confidence interval was set under the

assumption of standard normal distribution.).
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