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Deep Learning Algorithm for Multi-cancer Detection and Classification using cf-WGS
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Purpose Result

Several cell-free DNA (cf-DNA) features, such as genome-wide coverage, fragment size, and fragment end motif frequency, have shown their potentials for cancer For cancer detection, the ensemble model achieved sensitivities of 85.2% [95% confidence interval (Cl): 71.8% to 94.5%)], 74.9% (Cl: 68.0% to 88.0%), 73.2% (Cl: 66.7%
detection. In this study, we developed two independent models, GC (gross chromatin), and FEMS (fragment end motif frequency and size). Each model uses images to 85.9%) at a specificity of 95%, 98% and 99% and the AUC value of 0.97(Cl: 0.95-0.99) in the test dataset. By the cancer stages, sensitivity was 62.8% (Cl: 48.8% to
generated from genome-wide normalized sequencing coverage and cf-DNA fragment end motif frequencies according to the different cf-DNA size profiles. Then 83.7%) in stage |, 66.3% (Cl: 57.7% to 82.7%) in stage I, 85.9% (Cl: 77.5% to 94.4%) in stage Ill, and 76.1% (Cl: 63.4% to 87.3%) in stage IV at 99% specificity. For multi-
we integrated them into a single ensemble model to improve cancer detection and multi-cancer type classification accuracy. cancer classification, the overall accuracy of 85.1% (Cl: 80.4% to 89.3%) was achieved including 6 cancer types.

Accuracy AUC 95% Specificity 98% Specificity 99% Specificity

M eth O d (95% Cl) (95% Cl) Sensitivity (95% Cl) Sensitivity (95% Cl) Sensitivity (95% Cl)
GC_FEMS 92.8% 97.2% 85.2% 74.9% 73.2%

Ensemble Model (90.4% to 95.2%) (95.4% to 98.6%) (71.8% to 94.5%) (68.0% to 88.0%) (66.7% to 85.9%)

Low depth cfDNA-WGS data was generated from 1,396 patients (stage I: 14.9%, stage II: 35.6%, stage Ill: 24.9%, stage IV: 24.2%, unknown: 0.4%) with breast (n=702),
liver (n=213), esophageal (n=155), ovarian (n=151), pancreatic (n=85), lung (n=53), head and neck (n=16), biliary tract (n=15), and colon cancer (n=6) and 417 healthy T . : .

T o . N : : able 2: Cancer Detection Performance in Test Dataset
individuals. Samples were randomly split into training, validation, and test dataset stratified by cancer types and stages. Cancer types with a small number of samples
(<20) were excluded for multi-cancer type classification. Each model was trained using a convolutional neural network, then integrated into a single ensemble model
by averaging the predicted probabilities calculated from each model.
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Figure 1: Schematic Overview. a) GC model. Gross chromatin (GC) model uses sequencing coverage pattern of cfDNA which mimics nucleosome positioning in genome. Coverage pattern is plotted per chromosome ' ' : ' B e -0
and stacked to create a single GC plot per sample. b) FEMS model. Fragment end motif frequencies and size (FEMS) information was used to create FEMS plot which represents fragmentomic profile of plasma cfDNA. ' 7 _ B esophageal (n=33)
X andy axes represent motif frequency and size profile respectively. Two independent CNN models were trained using GC and FEMS plot and then the predicted probabilities calculated from each model were averaged ' Ovarian (n=31)
to make a final ensemble prediction.
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Table 1: Data Used. Train, validation, and test dataset were used for model training, Highly sensitive and accurate deep learning model for cancer detection and multi-cancer classification was generated by combining different types of ci-DNA
hyper-parameter tuning, and final performance evaluation respectively. Figure 2: Cancer Stage Distribution features. This result provides the opportunity for general population multi-cancer screening using various cf-DNA features.
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