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Background Result

Various cell-free DNA (cfDNA) features including methylation and genomic profiles have been investigated for their potential use in early cancer detection. We tested the cancer detection performance of various feature combinations using all data from ctWEMseq (n=267). Regardless of the bin size, the GMB single model

We developed deep learning models based the data generated by the enzymatic conversion based whole methylome sequencing of cfDNA. achieved higher performance than the GC single model. The best-performing model is the ensemble model of GMB (100k bin) and MS. The cancer detection performance
of this ensemble model reached an accuracy 96% (Cl: 93.6% to 98.1%), AUC 0.99 (Cl: 0.97 to 1.0) and sensitivity 98.0% (Cl: 92.4% to 99.5%) with a specificity of 90%.
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MS_GMB(100K) 95.9% 0.99 98.0% 93.4%
Ensemble Model (93.6% to 98.1%) (0.97 to 1.00) (92.4% to 99.5%) (82.3% to 99.0%)

Cell-free whole genome Enzymatic Methyl sequencing (ctWEMseq) data were generated from 198 cancer patients (stage I: 11%, II: 17%, IlI: 22%, IV: 20%, unknown: 31%)
and 69 healthy controls. The cancer types were consisted of breast (n=31), liver (n=24), esophageal (n=38), pancreatic (n=30), colon (n=34), ovarian (n=18), and lung
(n=23). Sequence data was produced on average of 200 million reads using Novaseqg 6000 (Illumina). For model training and evaluation, data partitioning was stratified

by cancer type, and 5-fold cross validation was used. Coverage and methylation beta values were calculated by binning at fixed size of 100K, 1M, and 5M base and variable
size from Topologically Associated Domains (TAD). Genome Coverage (GC), Genome Methylation Beta values (GMB), and Mutation Signature (MS) features were trained
using a one-dimensional convolutional neural network (1D-CNN). The performance of the model was evaluated by measuring the average value of the results measured
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Table 1: Cancer Detection Performance in Test Dataset
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Figure 3: Cancer Detection Sensitivity by Model Types
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Figure 1. a) Methylation Beta Value model, b) Genome Coverage model, ¢) Mutation Signature model. Each model was averaged to make a final ensemble prediction. % % % % % T WV kw1 00V unkeown W v unknown
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These results provide an opportunity for higher accuracies by integrating methylation information and genomic data using ctWEMseq
Figure 2: Stage Distribution by Cancer Types
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