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Abstract: Copy number variations (CNVs) represent a type of structural variant involving alterations
in the number of copies of specific regions of DNA that can either be deleted or duplicated. CNVs
contribute substantially to normal population variability, however, abnormal CNVs cause numerous
genetic disorders. At present, several methods for CNV detection are applied, ranging from the
conventional cytogenetic analysis, through microarray-based methods (aCGH), to next-generation
sequencing (NGS). In this paper, we present GenomeScreen, an NGS-based CNV detection method
for low-coverage, whole-genome sequencing. We determined the theoretical limits of its accuracy
and obtained confirmation in an extensive in silico study and in real patient samples with known
genotypes. In theory, at least 6 M uniquely mapped reads are required to detect a CNV with the length
of 100 kilobases (kb) or more with high confidence (Z-score > 7). In practice, the in silico analysis
required at least 8 M to obtain >99% accuracy (for 100 kb deviations). We compared GenomeScreen
with one of the currently used aCGH methods in diagnostic laboratories, which has mean resolution
of 200 kb. GenomeScreen and aCGH both detected 59 deviations, while GenomeScreen furthermore
detected 134 other (usually) smaller variations. When compared to aCGH, overall performance of the
proposed GenemoScreen tool is comparable or superior in terms of accuracy, turn-around time, and
cost-effectiveness, thus providing reasonable benefits, particularly in a prenatal diagnosis setting.

Keywords: CNV detection; low-coverage WGS; CNV detection comparison; aCGH replacement

1. Introduction

Copy number variations (CNVs) represent a phenomenon in which sections of the
genome are repeated while the number of repeats in the genome varies between individuals.
CNVs contribute substantially to normal population variability. However, abnormal CNVs
are known to cause numerous genetic disorders. Several methods for CNV analysis are
used, from the conventional cytogenetic analysis, through microarray-based approaches,
to next-generation sequencing (NGS) [1].

Array-based comparative genomic hybridization (aCGH) delivers genome-wide cov-
erage at a great resolution, even on the scale of dozens of kilobases (10–25 kb) [2]. This fact
resulted in aCGH having been the gold standard in CNVs detection for several years. Even
though current microarrays offer flexibility in coverage across variable resolution formats,
there are still some disadvantages to be considered. For example, in prenatal diagnosis from
amniotic fluid, micrograms of genomic DNA are typically needed to hybridize to an array.
This can be accomplished either by time-consuming culturing taking up to two weeks, or by
whole-genome amplification, which can introduce bias into the analysis. On the contrary,
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NGS utilizes mere nanograms of DNA, thus not requiring additional amplification. There
is lower likelihood of sample contamination due to less material required. The transition
from the proven microarray platform to NGS often reveals some new and unexpected data;
however, it seems to be a very slow event though the cost and time aspect is already quite
unprecedented. Additionally, while aCGH equipment serves a single purpose only, com-
monly used NGS platforms are very versatile, enabling numerous applications, including
exome, genome, targeted panels, transcriptome, or episome sequencing. The whole-exome
and targeted sequencing aims to reduce the sequencing cost but is limited to certain regions
(protein-coding or custom), where most known disease-causing mutations occur [3]. NGS
provides a sensitive and accurate approach for the detection of the major types of genomic
variations, including CNVs [4,5].

A handful of CNV detection tools have been introduced in recent years, specifically for
targeted and exome sequencing [6–12]. However, these tools are not suitable for data from
whole-genome, low-coverage sequencing. The notable whole-genome CNV detection tools
include Wisecondor X [13] (successor of Wisecondor [14] tool), CNVkit [15], CNVnator [16],
or iCopyDav [17]. Partial comparison of some of these tools is provided in the publication
of Wisecondor X [13].

In this paper, we present GenomeScreen—a low-coverage, whole-genome NGS-based
CNV detection method and estimate its accuracy in theoretical and in silico settings. This
method is partially based on the previously published non-invasive prenatal testing (NIPT)
CNV detection method [18,19]. The main differences are the parameters of the reported
CNVs—in the NIPT setting, the CNVs corresponding to more than 5% fetal fraction and at
least 3 Mb in size were reported. Here, on the other hand, we focus on full (non-mosaic)
aberrations with much shorter length (100 kb and larger). Furthermore, we compare the
sensitivity of GenomeScreen to the more conventional aCGH method on 106 laboratory-
prepared clinical samples. The comparison of GenomeScreen and different CNV detection
tools goes beyond the scope of this article due to focus on the comparison with the aCGH
method itself.

2. Materials and Methods
2.1. Sample Collection and Processing

All patient samples were analyzed as a part of commercially available testing in
cooperation with gynecologists, clinical geneticists, and genetic centers. All patients signed
informed consent regarding participation in the research project. Samples of chorionic villi,
amniotic fluid, placenta, tissue, or peripheral blood were obtained from 106 patients in
the clinical sample group and 789 patients in the training group. Peripheral blood was
sampled in K2E (EDTA) vacuum tubes (BD Vacutainer, Plymouth, UK) or Cell-Free DNA
BCT (STRECK) vacuum tubes (Streck, La Vista, NE, USA), inverted several times after
collection, stored in chilled environment (4–10 ◦C) for EDTA and at room temperature for
STRECK tubes, and transported to the laboratory within 36 h. DNA was extracted from
200 µL of whole blood or 700 µL of amniotic fluid using the QIAamp DNA Blood Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocol and stored at −20 ◦C
until further analysis.

Genomic DNA from clinical samples was fragmented using 1 U/µL dsDNA Shear-
ase™ Plus (Zymo Research, Irvine, CA, USA) and incubated for 23 min at 42 ◦C to generate
100–500 bp fragments. For adapter-ligated DNA library construction, the TruSeq Nano
kit (Illumina, San Diego, CA, USA) with an in-house optimized protocol was used. Low-
coverage sequencing (0.3×) was performed on the Illumina NextSeq 500/550 platform
(Illumina, San Diego, CA, USA) with paired-end setting 2 × 35 using High-Output Se-
quencing Kit v2.5. Library quantity and quality were measured by fluorometric assay on
Qubit 2.0 (dsDNA HS Assay Kit, Life Technologies, Eugene, OR, USA). Fragment analysis
was performed on the 2100 Bioanalyzer (High Sensitivity DNA Kit, Agilent Technolo-
gies, Waldbronn, Germany). We targeted 5 M uniquely mapped reads per sample, while
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none of the analyses were excluded due to lower (or higher) read counts (more details in
Supplementary material Table S1).

2.2. Theoretical Minimal Read Count Estimation

Let us suppose that we model sequencing as a random choice of reads from the
whole (mappable) genome. Then, we can theoretically deduce the number of necessary
uniquely mapped reads for a certain accuracy criterion. The random choice for a target
region is described by the binomial distribution with the mean µ = np and the variance
σ2 = np(1 − p). Here, p is the probability of choosing a read from the target region, and n
is the number of reads sequenced. The probability p can furthermore be expressed as the
ratio of the region length lc to the whole-genome length lg (p = lc/lg). When predicting
a CNV, we need to have a certain confidence traditionally determined by the Z-score (Z),
defined as follows:

Z =
δ − µ

σ
(1)

Here, δ represents the number of reads that we observe in the target region. We assume
that the number of reads in the target region will be proportional to the number of present
copies of gonosomes, i.e., either δ = n(p + p/2) for duplication or δ = n(p − p/2) for
deletion of the region on a single chromosome. If we solve the equation for Z2 and substitute

Z2 =
(δ − µ)2

σ2 =
(n(p + p/2)− np)2

np(1 − p)
=

n2 p2

4np(1 − p)
=

np
4(1 − p)

=
nlc

4
(
lg − lc

) (2)

then we can estimate the minimal number of reads (n) to be able to predict a variation with
length lc with the desired Z-score (Z):

n ≥
4Z2(lg − lc

)
lc

(3)

2.3. Variant Identification

To identify variations, we performed the following pipeline:

1. Mapping and binning

a. Mapping reads using Bowtie 2 [20];
b. Binning reads into same-size 20 kb bins;
c. Normalizing bin counts.

2. Normalization (similar to the one published previously by [21])

a. GC bias correction by LOESS smoothing method [22];
b. Principal component analysis (PCA) normalization to remove higher-order

population artifacts on autosomal chromosomes;
c. Subtracting per-bin mean bin count to obtain data normalized around zero.

3. Filtration of unusable bins

a. Unmappable or poorly mappable regions (zero or low mean of bin count);
b. Repetitive regions or areas with certain systematically increased mappability

(high mean of bin count);
c. Highly variable regions (high variance of bin count).

4. Segment identification and reporting

a. Circular binary segmentation algorithm [23] to identify consistent segments of
similar coverage;

b. Assigning significance to segments based on the proportion of reads;
c. Visualization of findings (Figure 1).
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Grey dots represent the normalized individual bin counts for each bin. 
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sensitive settings. We used the hg19/GRCh37 reference in all applications, but other 
references can be used without changes to the algorithm. The reads were then filtered for 
map quality of at least 40 and binned according to their starts to same-size 20 kb bins. All 
subsequent analyses were performed on the bin counts, while the algorithm did not use 
any other information about reads (for example, sequence). For training purposes, the bin 
counts corresponding to autosomal chromosomes for each sample were normalized to the 
identical number of reads (i.e., each bin was divided so the sum of all bins on autosomal 
chromosomes would be the same for each sample). Furthermore, the same was performed 
separately for chromosome X and chromosome Y. As a consequence of the separate 
normalization of sex chromosomes, the applied approach can only detect small sex 
chromosomal variations and not the whole sex chromosomal aneuploidies. 

2.3.2. Normalization 
Normalization consisted of three steps: firstly, a sample-wise LOESS-based GC 

correction was deployed on the bin counts [22]. Next, the principal component analysis 
(PCA) normalization was used to remove higher-order population artifacts on autosomal 
chromosomes [21]. For training of the PCA, LOESS-corrected bin counts of 789 NIPT 
samples with female fetuses were converted to principal component space and the first 15 

Figure 1. Visualization of the detected deviations on chromosome 8. Chromosome location is on the X-axis. Normalized bin
count is on the Y-axis. Green lines represent normal bin count segments (normalized around zero), magenta lines visualize
aberrations (one deletion at the start of the chromosome, one duplication on p22–p12). Filtered bins are depicted as black
bars on the zero line on the Y-axis. The unmapped region around the centromere is visualized with the grey bar. Grey dots
represent the normalized individual bin counts for each bin.

Scripts (Python 3.7) and data are available on the website https://github.com/marcelTBI/
GenomeScreen (accessed on 14 April 2021).

2.3.1. Mapping and Binning

Firstly, the reads were mapped to a reference using Bowtie 2 [20] with –very-sensitive
settings. We used the hg19/GRCh37 reference in all applications, but other references
can be used without changes to the algorithm. The reads were then filtered for map
quality of at least 40 and binned according to their starts to same-size 20 kb bins. All
subsequent analyses were performed on the bin counts, while the algorithm did not use
any other information about reads (for example, sequence). For training purposes, the
bin counts corresponding to autosomal chromosomes for each sample were normalized
to the identical number of reads (i.e., each bin was divided so the sum of all bins on
autosomal chromosomes would be the same for each sample). Furthermore, the same
was performed separately for chromosome X and chromosome Y. As a consequence of the
separate normalization of sex chromosomes, the applied approach can only detect small
sex chromosomal variations and not the whole sex chromosomal aneuploidies.

2.3.2. Normalization

Normalization consisted of three steps: firstly, a sample-wise LOESS-based GC correc-
tion was deployed on the bin counts [22]. Next, the principal component analysis (PCA)
normalization was used to remove higher-order population artifacts on autosomal chro-
mosomes [21]. For training of the PCA, LOESS-corrected bin counts of 789 NIPT samples
with female fetuses were converted to principal component space and the first 15 principal
components were stored. The bin count vector of a new sample was then transformed
into principal component space defined by these first 15 components and transformed
back to the bin space to obtain residuals that were then removed from the bin counts. The
first principal components represent the noise commonly observed in euploid samples,
and their removal facilitates data normalization. In the present case, the PCA normaliza-
tion was performed only on autosomal chromosomes due to unavailability of a sufficient

https://github.com/marcelTBI/GenomeScreen
https://github.com/marcelTBI/GenomeScreen
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number of male samples for training. In the future, the training of PCA on both male and
female samples is likely to increase the precision of prediction for sex chromosomes. Lastly,
we subtracted per-bin mean bin counts to obtain data normalized around zero. This last
step was trained already on the PCA normalized bin counts (where available) and helped
compensate for the mapping inequality between various genomic regions.

2.3.3. Filtration of Unusable Bins

To further improve accuracy, we filtered bins that had an unusual signature—low
mean (this signaled poor mappability of the region), high mean (repetitive regions or
regions with a certain systematic bias), or high variance (highly variable regions). Further-
more, the filtered regions were manually curated to reduce their scatter, mainly around
centromeres and in sex chromosomes. The filtration screened out around 15% of the
genome, mainly due to the low mappability, especially in and around centromeres.

2.3.4. Segment Identification and Reporting

After normalization and filtering, we received a signal (grey dots in Figure 1) that
required segmentation into identical -level parts to be evaluated. To this end, we used
the circular binary segmentation (CBS) algorithm implemented in the R package DNA-
copy [23]. After segmentation, each segment was assigned a significance level based on
its length and difference from zero. Since we knew the mean bin counts, we could esti-
mate the level for a complete deletion or duplication per single copy of a chromosome
(magenta dashed lines in Figure 1). We then differed between five color-coded levels of
significance: magenta—minimum 75%, minimum 200 kb, red—minimum 25%, minimum
200 kb, orange—minimum 25%, minimum 40 kb, yellow—minimum 12.5%, minimum
40 kb, and green—all others (very short segments or segments around zero). The findings
were then reported as a text file for further machine processing, while each chromosome
was visualized (Figure 1).

2.4. In-Silico Analysis

For the in silico analysis, we chose 83 samples without any aberration and with a read
count of at least 10 M. Firstly, the samples were down-sampled to the studied read count
(3–10 M with the step of 1 M). Then, for each of the tested variation lengths (20–200 kb
with the step of 20 kb), 100 random variations on autosomal chromosomes were generated
that did not overlap with the filtered regions (see Section 2.3.3). To create a sample with
an artificial aberration, the bins corresponding to the generated random variation were
multiplied accordingly (thus, the most time-consuming mapping step was performed only
once per sample). Next, variant identification was performed without changes.

In total, we gradually created 664,000 artificial samples (100 variations × 83 sam-
ples × 10 variation lengths × 8 read counts) and performed variant identification on them
to analyze the impact of read count and variant length. Every detection that overlapped
the simulated region (the exact match of the coordinates was not required) was reported
as successful.

3. Results
3.1. Theoretical Minimal Read Count

The theoretical minimum of reads for predicting a variation with length lc with the
desired Z-score (Z) is estimated as (see Section 2.2)

n ≥
4Z2(lg − lc

)
lc

(4)

As a standard, the Z-score of 4 is used in the detection of whole chromosomal aneuploi-
dies [24,25]; however, there are inherently more possible CNVs than whole chromosomal
aneuploidies. Thus, the desired Z-score should be much higher in this instance to reduce
the number of false positives. Moreover, in practice, the number of necessary reads would
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be even higher due to the uncertainty of sequencing and mapping, and inherent biological
biases [26,27]. The theoretical minimal read count estimation for different Z-scores is
displayed in Figure 2.
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3.2. Detection Accuracy for Variable CNV Lengths and Read Count (In Silico)

To verify the theoretically estimated limitations, we first conducted a simulated in
silico experiment. Artificial samples with simulated CNV were created from healthy
samples by multiplication of bins corresponding to the simulated regions randomly selected
on the genome. Only the regions that did not span into filtered positions were kept for
further analysis (about 85% of the genome). The details can be found in Section 2.3.

The in silico analysis shows the influence of read count and CNV length on prediction
accuracy (Figure 3). Based on the findings, we recommend using read counts of at least
8 M to achieve >99% prediction accuracy for variations with 100 kb and more. We therefore
recommend following the line for the Z-score of 8 (red on Figure 2) to get an estimation for
different CNV lengths.

Comparison of simulated and reported regions showed that the method can predict
the exact simulated region coordinates in 88.2% or coordinates with one-bin difference in
97.7% of cases for 200 kb variation length and 10 M reads. These numbers slightly drop to
75.3% and 91.7% for 5 M reads. The imperfection in predicting coordinates is caused by
low coverage and lower mappability of some genomic regions.
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3.3. Validation of Clinical Samples

Finally, we ran an evaluation of samples analyzed previously in diagnostic settings
using the aCGH method (Human Genome CGH Microarray 4 × 44 K Agilent [28]) and
GenomeScreen. The selected aCGH method has 42,494 probes, which result in mean
accuracy of detection of approximately 200 kb. However, the probes are focused mainly in
gene regions and very sparsely in intergenomic regions; therefore, accuracy will be higher
within the gene regions and lower outside the genes.

From the 106 tested samples, 58 did not show any detection on aCGH, and the rest
contained 59 detections in total (lengths from 39 kb to 146 Mb), all of which were also
detected by GenomeScreen. The detections on GenomeScreen and on aCGH show excellent
concordance—median overlap of 94.37% (more data in Supplementary material Table S1).
GenomeScreen furthermore detected 134 additional variations with ranges from 80 kb to
1.48 Mb, mainly in the regions with a low number of aCGH probes and protein-coding
genes, where aCGH has low coverage (Figure 4 and Supplementary Material Table S1 and
Figure S1).
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4. Discussion

GenomeScreen test is a result of evolving laboratory methods and bioinformatic tools
validated in our laboratory and is currently available commercially. The assay originated
from a basic NIPT test focused on noninvasive prenatal screening for the three most
common trisomies. Later, the development continued by adding the detection of sex
chromosome aneuploidies and five selected microdeletions, and most recently it has been
advanced to a whole-genome scan for chromosomal microaberrations [18,24,25]. The
common link between all these tests is the method based on low-coverage, whole-genome
sequencing. Because all the versions of the above-mentioned NIPT tests are intended only
for screening, we wanted to validate the method also for diagnostic purposes with much
broader applicability in prenatal and postnatal diagnostics. One of the key applications is
the replacement of aCGH as the confirmatory method in noninvasive prenatal diagnostics.
Therefore, in the pilot phase, the method was validated on plasma and amniotic fluid
samples, while the analysis was later extended to chorionic villi, placental tissue, blood,
buffy coat, and fetal tissue.

GenomeScreen uses a binning approach, and the genomic coordinates of detected
variations are reported as a multiplier of the bin size (20 kb). Nevertheless, the prediction
of exact coordinates of the variation is not perfect (see Section 3.2), and it is therefore not
suitable for precise CNV detection at the level of exons. On the other hand, the aCGH
method uses probes, which can be seen as variable-size bins, where the resolution is equal
to the probe distance (which is sometimes larger than the 20 kb bin size). The precision
of both GenomeScreen and aCGH can be easily increased (by decreasing the bin size and
deeper sequencing in the case of GenomeScreen, or by introducing new probes in case of
aCGH), but these adjustments inevitably bring higher production cost.

The overall accuracy strongly depends on the depth of sequencing (see Figure 3). If
we set the GenomeScreen sequencing depth to achieve a slightly higher accuracy compared
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with aCGH, the cost per sample is 2–3 times lower for GenomeScreen. Furthermore, the
turnaround time from submission of a sample to completion of the whole process including
the analysis takes less time in the case of GenomeScreen (typically 2 to 5 days), whereas the
aCGH process may take up to 2 weeks when culturing is required. The culturing or DNA
amplification is usually required in NIPT setting, since the amount of retrieved DNA is not
sufficient for direct application of aCGH. However, even without these prior preparations,
the hybridization process itself takes at least 3 days to deliver the result.

The disadvantage of GenomeScreen is the necessity to train the used normalization
on at least 100 nonaberrated samples (training on fewer samples results in filtration of an
unnecessary large number of bins due to high variability), but we recommend using as
many samples as possible for training. The training should be performed separately for
each sample type (and/or different laboratory protocol), however, the trained parameters
are quite close across the different sample types that we studied. The parameters can
therefore be reused with only a slight decrease in accuracy and noise in CNV profiles. We
did not experiment with different laboratory protocols; thus, we cannot assess how it may
affect the training parameters. The need for re-training for different laboratory processing
of the samples and/or sample types makes this approach difficult to test on datasets other
than our own since the datasets available usually do not contain enough samples and
information to train and test GenomeScreen. The study is based on analyses of 789 training
and 106 control samples with both groups of plasma type.

The false-positive rate of GenomeScreen has not been studied in this paper and should
be adequately addressed in the future. However, the loss or gain of the (nonmosaic)
deviation with a length of at least 100 kb is so substantial that we do not expect to observe
any false-positive detections.

One substantial, albeit only technological advantage of the GenomeScreen method, is
the involvement of the same laboratories, protocols, chemistries, instruments, and labora-
tory technicians for both the screening NIPT test and the confirmatory GenomeScreen test.
This was not possible in the case of the confirmatory aCGH test due to entirely different
protocols, corresponding infrastructure, and chemistry. The ability to use a method and its
modifications with the same technical specification for screening as well as diagnostics (sub-
sequent and/or confirmatory) is rarely encountered in laboratory medicine. Therefore, the
presented study results fit into the trend of unification of processes on the part of laboratory
work as well as bioinformatics and its utilization in different fields of clinical testing.

5. Conclusions

In this article, we presented a new method for CNV detection based on low-coverage,
whole-genome sequencing—GenomeScreen. We estimated its theoretical sensitivity and
conducted a series of in silico tests to estimate it in a semi-real setting. Next, we compared this
method directly with a commonly used aCGH method on 48 control samples with known
aberrations. The new method detected all of the known aberrations and found even more
aberrations mainly in intergenic regions where the studied aCGH delivers poor coverage.

According to the presented results, GenomeScreen is currently able to detect almost
all variations longer than 100 kb in mappable regions of the human genome. Moreover,
it is cheaper and offers shorter turnaround times in comparison with the studied aCGH
method. Thus, in the presented laboratory settings, it represents a favorable replacement
for the more conventional aCGH method to detect CNVs longer than 100 kb.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11040708/s1, Figure S1: Detection of GenomeScreen (all) and array-based compara-
tive genomic hybridization (aCGH) (red) based on the variation length and number of protein-coding
genes in the detected interval (by GenomeScreen). Deletions and duplications are visualized by
downward and upward triangles, respectively, Table S1: The details of CNV in used clinical samples.

Author Contributions: Conceptualization, T.S., G.M. and J.B.; methodology, M.K., M.H. and G.M.;
software, M.K.; validation, M.K., M.H. and G.M.; investigation, M.K.; resources, M.H.; data curation,

https://www.mdpi.com/article/10.3390/diagnostics11040708/s1
https://www.mdpi.com/article/10.3390/diagnostics11040708/s1


Diagnostics 2021, 11, 708 10 of 11

M.K. and M.H.; writing—original draft preparation, M.K.; writing—review and editing, M.K., M.H.,
G.M. and J.B.; visualization, M.K.; supervision, J.B.; funding acquisition, G.M. and T.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This publication was supported by the project “Long-term strategic research and devel-
opment focused on the occurrence of Lynch syndrome in the Slovak population and possibilities
of prevention of tumors associated with this syndrome” (ITMS 313011V578) co-financed by the
European Regional Development Fund (ERDF). The article was also created with the support of
the OP Integrated Infrastructure for the project: Introduction of an innovative test for screening
and monitoring of cancer patients—GenoScan LBquant, ITMS: NFP313010Q927, co-financed by the
ERDF. The data infrastructure was built with the support of the Operational Program Integrated
Infrastructure within the following project: “Horizontal ICT support and centralized infrastructure
for research and development institutions”, ITMS code 313011F988, co-financed by the ERDF.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved on 30 June 2015 by the Ethics Committee of the Bratislava
Self-Governing Region (03899/2015/HF).

Informed Consent Statement: All participants gave their informed consent for inclusion before par-
ticipation.

Data Availability Statement: Scripts (Python 3.7) and data are available on the website https:
//github.com/marcelTBI/GenomeScreen (accessed on 14 April 2021).

Acknowledgments: We thank Ondrej Pös and Zuzana Kubiritová for their valuable comments and
help with editing the manuscript text.

Conflicts of Interest: We declare a potential competing financial interest in the form of employee
contracts (see affiliations for each author) with Geneton Ltd. and TrisomyTest Ltd. Geneton Ltd.
participated in the development of a commercial NIPT test in Slovakia; however, it is not a provider
of this commercial test, but continues to do basic and applied research in the field of NIPT. On the
other hand, TrisomyTest Ltd. is the commercial provider of NIPT testing in Slovakia. Its participation
in the study was limited to the routine NIPT testing that generated the genomic results reused in our
research. Related to this work, there are no patents, products in development, or marketed products
to declare. The authors declare no other conflict of interest.

Abbreviations

aCGH array-based comparative genomic hybridization
CBS circular binary segmentation
CNV copy number variant
NGS next-generation sequencing
NIPT non-invasive prenatal testing
WGS whole-genome sequencing

References
1. Pös, O.; Budis, J.; Kubiritova, Z.; Kucharik, M.; Duris, F.; Radvanszky, J.; Szemes, T. Identification of Structural Variation from

NGS-Based Non-Invasive Prenatal Testing. Int. J. Mol. Sci. 2019, 20, 4403. [CrossRef] [PubMed]
2. Yoon, S.; Xuan, Z.; Makarov, V.; Ye, K.; Sebat, J. Sensitive and accurate detection of copy number variants using read depth of

coverage. Genome Res. 2009, 19, 1586–1592. [CrossRef] [PubMed]
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